Learning Distance Metrics for Multi-Label Classification

نویسندگان

  • Henry Gouk
  • Bernhard Pfahringer
  • Michael J. Cree
چکیده

Distance metric learning is a well studied problem in the field of machine learning, where it is typically used to improve the accuracy of instance based learning techniques. In this paper we propose a distance metric learning algorithm that is specialised for multi-label classification tasks, rather than the multiclass setting considered by most work in this area. The method trains an embedder that can transform instances into a feature space where squared Euclidean distance provides an estimate of the Jaccard distance between the corresponding label vectors. In addition to a linear Mahalanobis style metric, we also present a nonlinear extension that provides a substantial boost in performance. We show that this technique significantly improves upon current approaches for instance based multi-label classification, and also enables interesting data visualisations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning Contextual Metrics for Automatic Image Annotation

The semantic contextual information is shown to be an important resource for improving the scene and image recognition, but is seldom explored in the literature of previous distance metric learning (DML) for images. In this work, we present a novel Contextual Metric Learning (CML) method for learning a set of contextual distance metrics for real world multi-label images. The relationships betwe...

متن کامل

MLIFT: Enhancing Multi-label Classifier with Ensemble Feature Selection

Multi-label classification has gained significant attention during recent years, due to the increasing number of modern applications associated with multi-label data. Despite its short life, different approaches have been presented to solve the task of multi-label classification. LIFT is a multi-label classifier which utilizes a new strategy to multi-label learning by leveraging label-specific ...

متن کامل

Exploiting Associations between Class Labels in Multi-label Classification

Multi-label classification has many applications in the text categorization, biology and medical diagnosis, in which multiple class labels can be assigned to each training instance simultaneously. As it is often the case that there are relationships between the labels, extracting the existing relationships between the labels and taking advantage of them during the training or prediction phases ...

متن کامل

An Effective Approach for Robust Metric Learning in the Presence of Label Noise

Many algorithms in machine learning, pattern recognition, and data mining are based on a similarity/distance measure. For example, the kNN classifier and clustering algorithms such as k-means require a similarity/distance function. Also, in Content-Based Information Retrieval (CBIR) systems, we need to rank the retrieved objects based on the similarity to the query. As generic measures such as ...

متن کامل

Comparative evaluation of four multi-label classification algorithms in classifying learning objects

The classification of learning objects (LOs) enables users to search for, access, and reuse them as needed. It makes e-learning as effective and efficient as possible. In this article the multilabel learning approach is represented for classifying and ranking multi-labelled LOs, whereas each LO might be associated with multiple labels as opposed to a single-label approach. A comprehensive overv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016